N-FLUORSILYL-PHOSPHINIMINE, DARSTELLUNG UND EIGENSCHAFTEN

W. WOLFSBERGER

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, 8700 Würzburg (Bundesrepublik Deutschland)

SUMMARY

Numerous N-fluorosilyl triorganophosphine imines of the general formula $R_3P=N-Si(CH_3)_{3-n}F_n$ have been prepared by two different routes, (a) by trans-silylation of the corresponding N-trimethylsilyl compounds with fluorosilanes, and (b) by the reaction of N-chlorosilyl phosphine imines with sodium fluoride, and characterized by IR and NMR spectra, elemental analyses, and molecular weight determinations. In solution all these compounds are monomeric, but in the solid state two of these phosphine imines are dimers containing pentacoordinated silicon atoms.

ZUSAMMENFASSUNG

Zahlreiche N-Fluorsilyl-triorganophosphinimine der allgemeinen Formel $R_3P=N-Si(CH_3)_{3-n}F_n$ wurden auf zwei verschiedenen Wegen erhalten, (a) durch Umsilylierung der korrespondierenden N-Trimethylsilyl-Verbindungen mit Fluorsilanen und (b) durch Umsetzung von N-Chlorsilyl-phosphiniminen mit Natriumfluorid und durch IR- und NMR-Spektren, Elementaranalysen und Molekularge-wichtsbestimmungen charakterisiert. In Lösung sind diese Verbindungen alle monomer, während im festen Zustand zwei dieser Phosphinimine dimer aufgebaut sind und pentakoordinierte Siliciumatome enthalten.

EINLEITUNG

Die durch den Austausch von Alkylgruppen in peralkylierten N-Silyl-phosphiniminen, $R_3P=N-SiR'_3$, gegen Halogenatome hervorgerufenen elektronischen Veränderungen des P=N-Si-Skeletts sind teilweise so weitgehend, daß eine größere Zahl der resultierenden Produkte zur Dimerisierung neigt. Aus bisherigen Arbeiten ist nun bekannt [1-7], daß N-Silyl-phosphinimine in Abhängigkeit von den Substituenten L (L = organischer Rest und/oder Halogen) nicht weniger als vier verschiedene Strukturprinzipien (A, B, C und D) verwirklichen können.

Während zahlreiche Verbindungen der Struktur B und D beschrieben und gut untersucht sind, gelang es bis jetzt nur jeweils einen Vertreter für A [5] und C [2,4] zu isolieren. In

der Chemie der N-Silyl-phosphinimine sollten aber solche Verbindungen als Intermediate eine nicht unwichtige Rolle spielen. So nehmen wir z. B. an, daß die Einstellung des Gleichgewichtes D \rightleftharpoons B der nachstehend formulierten Reaktionen (1) und (2) über C als Zwischenstufe verläuft [7].

$$(\text{Et}_2\text{MeP=N-SiMe}_2)_2^{2+} 2 \text{ Cl} \xrightarrow{+ \text{ Solvens}} 2 \text{ Et}_2\text{MeP=N-SiMe}_2\text{Cl} (1)$$

$$(\text{EtMe}_{2}\text{P=N-SiMe}_{2})_{2}^{2+} 2 \text{ Cl} \xrightarrow{> 160^{\circ}\text{C}} 2 \text{ EtMe}_{2}\text{P=N-SiMe}_{2}\text{Cl} (2)$$

160

Aufgrund der hohen Si-F-Bindungsenergie sollte eine eventuell stattfindende Dimerisierung N-fluorsilylsubstituierter Phosphinimine bei der Stufe C stehen bleiben, wie dies im Falle der Verbindung $(Me_3PNSiF_3)_2$ auch nachgewiesen wurde (s. o.). Wir haben deshalb unsere anfänglichen Studien [2] über diese Verbindungsklasse nochmals aufgegriffen [4], und über die Resultate dieser Arbeiten soll hier berichtet werden.

ERGEBNISSE UND DISKUSSION

Zur Darstellung von N-Fluorsilyl-phosphiniminen wurden zwei Wege gewählt, nämlich die Umsilylierung von N-Trimethylsilylphosphiniminen mit Fluorsilanen und die Umsetzung der korrespondierenden N-Chlorsilyl-Verbindungen mit NaF in CH₃CN.

$$R_{3}^{P=N-SiMe_{3}} + Me_{4-n}^{SiF_{n}} \xrightarrow{R_{3}^{P=N-SiMe_{3-n}F_{n}}} R_{3}^{P=N-SiMe_{3-n}F_{n}} + Me_{3}^{SiF}$$
(3)

$$R_{3}P=N-SiMe_{3-n}Cl_{n} + n NaF \longrightarrow R_{3}P=N-SiMe_{3-n}F_{n} + n NaCl (4)$$

Da die bei Raumtemperatur rasch ablaufenden Umsilylierungen quantitativ erfolgen, und somit die Isolierung der Endprodukte wegen der Leichtflüchtigkeit der Fluorsilane (Kp. <20°C) denkbar einfach ist, stellt dieses Verfahren die Methode der Wahl dar. Fluorierungen mit NaF benötigen auch bei Temperaturen von 80°C mehrere Tage.

wurden nach (3)	und/oder (4) er	stmals oder no	ochmals hergestell
R ₃	n = 1	n = 2	n = 3
(CH ₃) ₃	I	IX	XXI
(C ₂ H ₅) ₃	II	XII	IIXX
$(n-C_3H_7)_3$	III	XIII	XXIII
$(n-C_{A}H_{Q})_{3}$	IV	VIX	VIXX
$(i-C_3H_7)_3$	v	XV	XXV
$(i-C_{A}H_{Q})_{3}$	VI	IVX	IVXX
$(t-C_{A}H_{Q})_{3}$	VII	XVII	XXVII
$(t-C_{4}H_{9})_{2}$, CH_{3}	VIII	XVIII	XXVIII
$t - C_A H_Q$, $(CH_3)_2$	IX	XIX	XIXX
с ₆ н ₅ , (сн ₃) ₂	Х	XX	XXX

Folgende Verbindungen der allgemeinen Formel $R_3^{P=N-SiMe_3-nF_n}$

Die N-Fluorsilyl-phosphinimine (I-XXX) sind farblose, hydrolyseempfindliche Substanzen, die in einer Inertgasatmosphäre aber gut haltbar sind. Die zum Teil sehr tief schmelzenden Verbindungen lassen sich im Vakuum ohne Zersetzung destillieren bzw. sublimieren (Tab. 5). In den gängigen aprotischen Solventien sind sie gut löslich und liegen nach kryoskopischen (C6H6) oder ebullioskopischen (CH₂Cl₂) Molekulargewichtsbestimmungen im gelösten Zustand als Monomere vor (Tab. 5). Aufgrund der IR-Spektren gilt dies auch für den Reinzustand der flüssigen und, mit einer Ausnahme, für die Nujolsuspensionen der bei Raumtemperatur festen Verbindungen (Tab. 2). So tritt die der $\mathcal{N}(P=N)$ zuzuordnende Bande zwischen 1370 und 1280 cm⁻¹ auf. in einem Bereich, der für monomer aufgebaute N-Silyl-phosphinimine charakteristisch ist [1.2.7]. In (XXI) erscheint v(P=N) bei 1052 cm⁻¹. Dies deutet auf eine koordinative Betätigung der Stickstoffatome der P=N-Bindung, also auf eine Assoziation von (XXI), hin. Eine kürzlich durchgeführte Röntgenstrukturanalyse [4] konnte nun eindeutig belegen, daß (XXI) einen dimeren Aufbau mit pentavalenten Siliciumatomen besitzt. Verbindung (XXI) stellt somit ein weiteres Beispiel für pentavalentes Silicium dar. das schon lange postuliert [8] und in den letzten zehn Jahren bei fast zwanzig Verbindungen durch Röntgenstrukturanalyse gesichert wurde [9-26].

Die NMR-Spektren (Tab. 1 und 2) sind in Einklang mit der geforderten Zusammensetzung und der monomeren Struktur der Verbindungen. Dabei zeigte sich. daß die chemische Verschiebung des Fluors je nach Fluorierungsgrad der Verbindungen einen relativ engen Erwartungsbereich aufweist, der für die Monofluor-Derivate (I-X) bei -126 bis -129 ppm, für die Difluorverbindungen (XI-XX) bei -122 bis 124 ppm und für die Trifluorsilyl-phosphinimine (XXI-XXX) zwischen -144 und -148 ppm liegt. Die fortschreitende Fluorsubstitution drückt sich auch in charakteristischen Werten für die Kopplungskonstante J(¹⁹F²⁹Si) aus: nämlich 264 bis 268 Hz für (I-X), 253 bis 259 Hz für (XI-XX) und 175 bis 185 Hz für (XXII-XXIX). Bezüglich der chemischen Verschiebung des Phosphors verweisen wir auf eine frühere Arbeit [27]. da hier ähnliche Gesetzmäßigkeiten auftreten wie bei den entsprechenden.N-Trimethylsilyl-Verbindungen, wobei mit steigendem Fluorgehalt eine zunehmende Verschiebung des Phosphorsignals zu tieferen Feldstärken zu beobachten ist.

162

¹H-NMR-Daten der Verbindungen I-XXXI[§]

- I: $\delta_{CH_3(Si)}$: 0.03; $\delta_{CH_3(P)}$: 1.41; $J({}^{1}HC{}^{31}P)$: 12.85; $J({}^{1}HCSi{}^{19}F)$: 5.85; $J({}^{1}HCSi{}^{31}P)$: 0.4.
- II: $\delta CH_3(Si)$: 0.05; $\delta CH_3(C)$: 1.07; $\delta CH_2(P)$: 1.58; $J(^{1}HCC^{31}P)$: 16.7; $J(^{1}HC^{31}P)$: 11.0; $J(^{1}HCSi^{19}F)$: 5.9; $J(^{1}HCSiN^{31}P)$: 0.2.
- III: $\delta_{CH_3}(s_i)$: 0.03; $\delta_{CH_3}(c)$: 1.01; $\delta_{(CH_2)_2}(P)$: 1.52; $J_1^{(1}HCS_1^{19}F)$: 5.75; $J_1^{(1}HCS_1^{31}P)$: 0.3.
- IV: $\delta CH_3(Si)$: 0.03; $\delta CH_3(C)$: 0.93; $\delta (CH_2)_3(P)$: 1.50; $J(^{1}HCSi^{19}F)$: 5.85; $J(^{1}HCSiN^{31}P)$: 0.25.
- V: $\delta CH_3(Si)$: 0.05; $\delta CH_3(C)$: 1.15; $\delta CH(P)$: 1.99; $J(^{1}HCSi^{19}F)$: 5.7; $J(^{1}HCSi^{31}P)$: 0.3.
- VI: $\delta CH_3(Si)$: 0.03; $\delta CH_3(C)$: 1.03; $\delta CH_2(P)$: 1.52; $\delta CH(C)$: 2.04; $J(^{1}HCSi^{19}F)$: 5.7; $J(^{1}HCSiN^{31}P)$: 0.3.
- VII: $\delta_{CH_3}(s_1)$: 0.09; $\delta_{CH_3}(c)$: 1.32; $J({}^{1}Hcc{}^{31}P)$: 12.6; $J({}^{1}Hcsi{}^{19}F)$: 5.65; $J({}^{1}Hcsi{}^{31}P)$: 0.3.
- VIII: $\delta_{CH_3}(s_1)$: 0.05; $\delta_{CH_3}(c)$: 1.19; $\delta_{CH_3}(P)$: 1.25; $J({}^{1}Hcc{}^{31}P)$: 13.8; $J({}^{1}Hc{}^{31}P)$: 10.7; $J({}^{1}Hcsi{}^{19}F)$: 5.8; $J({}^{1}Hcsi{}^{31}P)$: 0.35.
- IX: $\delta_{CH_3}(s_1)$: 0.03; $\delta_{CH_3}(c)$: 1.10; $\delta_{CH_3}(P)$: 1.32; $J({}^{1}Hcc{}^{31}P)$: 15.05; $J({}^{1}Hc{}^{31}P)$: 11.75; $J({}^{1}Hcsi{}^{19}F)$: 5.9; $J({}^{1}Hcsi{}^{31}P)$: 0.35.
- X: $\delta_{CH_3(S1)}$: 0.10; $\delta_{CH_3(P)}$: 1.63; $\delta_{H(Ar.)}$: 7.17 bis 7.78; $J({}^{1}_{HC}{}^{31}_{P})$: 12.85; $J({}^{1}_{HC}{}^{19}_{F})$: 6.05; $J({}^{1}_{HC}{}^{S1}_{P})$: 0.4.
- XI: $\delta_{CH_3}(s_1)$: 0.12; $\delta_{CH_3}(P)$: 1.45; $J({}^{1}HC^{31}P)$: 13.0; $J({}^{1}HCs_1{}^{19}F)$: 4.3; $J({}^{1}HCs_1{}^{31}P)$: 0.45.
- XII: $\delta_{CH_3}(s_i)$: 0.14; $\delta_{CH_3}(c)$: 1.09; $\delta_{CH_2}(P)$: 1.62; $J({}^{1}Hcc^{31}P)$: 17.0; $J({}^{1}Hc^{31}P)$: 11.2; $J({}^{1}Hcsi^{19}F)$: 4.0; $J({}^{1}Hcsin^{31}P)$: 0.35.
- XIII: $d_{CH_3}(s_1)$: 0.12; $d_{CH_3}(c)$: 1.02; $d_{(CH_2)_2}(P)$: 1.55; $J({}^{1}HCSi{}^{19}F)$: 4.2; $J({}^{1}HCSiN{}^{31}P)$: 0.35.
- XIV: $\delta_{CH_3}(S1)$: 0.12; $\delta_{CH_3}(C)$: 0.93; $\delta_{(CH_2)_3}(P)$: 1.52; $J(^{1}_{HCS1})^{19}_{F}$: 4.15; $J(^{1}_{HCS1})^{31}_{P}$: 0.3.
- xv: $\delta ch_3(si)$: 0.16; $\delta ch_3(c)$: 1.17; $\delta ch(P)$: 2.06; $J(^{1}hcsi^{19}F)$: 4.1; $J(^{1}hcsi^{31}P)$: 0.25.

XVI: $\delta_{CH_3}(s_i)$: 0.12; $\delta_{CH_3}(c)$: 1.03; $\delta_{CH_2}(P)$: 1.56; $\delta_{CH}(c)$: 2.05; $J({}^{1}Hcsi{}^{19}F)$: 4.2; $J({}^{1}Hcsi{}^{31}P)$: 0.3. XVII: $\delta CH_3(Si)$: 0.19; $\delta CH_3(C)$: 1.34; $J(^{1}HCC^{31}P)$: 13.0; $J(^{1}HCSi^{19}F)$: 4.05; $J(^{1}HCSiN^{31}P)$: 0.2. XVIII: $\delta_{CH_3}(s_i)$: 0.14; $\delta_{CH_3}(c)$: 1.22; $\delta_{CH_3}(P)$: 1.31; $J({}^{1}Hcc{}^{31}P)$: 14.1; $J({}^{1}Hc{}^{31}P)$: 10.95; $J({}^{1}Hcsi{}^{19}F)$: 4.1; $J({}^{1}Hcsi{}^{31}P)$: 0.3. XIX: $\delta_{CH_3}(s_1)$: 0.13; $\delta_{CH_3}(c)$: 1.11; $\delta_{CH_3}(P)$: 1.36; $J({}^{1}Hcc^{31}P)$: 15.4; $J({}^{1}Hc^{31}P)$: 12.0; $J({}^{1}Hcsi^{19}F)$: 4.2; $J({}^{1}Hcsi^{31}P)$: 0.35. XX: $\delta_{CH_3}(s_1)$: 0.20; $\delta_{CH_3}(P)$: 1.69; $\delta_{H}(Ar.)$: 7.19 bis 7.79; $J({}^{1}HC{}^{31}P)$: 13.05; $J({}^{1}HCsi{}^{19}F)$: 4.3; $J({}^{1}HCsiN{}^{31}P)$: 0.4. XXI: SCH₃(P): 1.51; J(¹HC³¹P): 13.2. XXII: $\delta CH_3(C)$: 1.11; $\delta CH_2(P)$: 1.67; $J(^1HCC^{31}P)$: 17.45; $J(^{1}HC^{31}P)$: 11.5. XXIII: δCH₃(C): 1.02; δ(CH₂)₂(P): 1.57. XXIV: $\delta_{CH_3}(C)$: 0.93; $\delta_{(CH_2)_3(P)}$: 1.53. XXV: $\delta CH_3(C)$: 1.19; $\delta CH(P)$: 2.09. XXVI: dCH₃(C): 1.05; dCH₂(P): 1.61; dCH(C): 2.06. XXVII: $\int CH_{z}(C)$: 1.36; $J(^{1}HOC^{31}P)$: 13.3. XXVIII: $d_{CH_3}(c)$: 1.23; $d_{CH_3}(P)$: 1.36; $J(^{1}HCC^{31}P)$: 14.45; $J(^{1}HC^{31}P)$: 11.0. XXIX: $\delta CH_3(C)$: 1.13; $\delta CH_3(P)$: 1.41; $J(^1HCC^{31}P)$: 15.7; $J(^1HC^{31}P)$: 12.1. XXX: $\int CH_3(P)$: 1.74; $\int H(Ar.)$: 7.23 bis 7.83; $J(^1HC^{31}P)$: 13.25; XXXI: $\delta_{CH_3}(C)$: 1.14; $\delta_{CH_3}(P)$: 1.46; $\delta_{CH_2}(P)$: 1.72; $J({}^{1}HCC{}^{31}P)$: 18.6; $J({}^{1}HC{}^{31}P)$: 12.6; $J({}^{1}HC_{R+}{}^{31}P)$: 12.5.

164

[§]Die NMR-Spektren wurden mit einem Gerät Varian T 60 bei 60 MHz aufgenommen (Solvens: Methylenchlorid; interner Standard: TMS). Chemische Verschiebungen d in ppm, Kopplungskonstanten in Hz; Alle Werte der chemischen Verschiebungen liegen zu niederen Feldstärken, bezogen auf den Standard.

TABELLE 2

Nr.	бғ	$_{\rm J}^{19}{}_{\rm F}^{29}{}_{\rm Si})$	$J(^{19}F^{31}P)$	δ ₽	√ (P=N)	V(Si-F)
I	-128.8	267.5	3.35	6.6	1282	
II	-127.6	267	0.3	23.3	1316	
III	-127.8	267	0.2	17.1	1322	
IV	-127.8	267.5	0.2	18.2	1322	
v	-126.5	264.5	3.25	29.7	1346	
VI	-127.4	266.5	2.15	11.5	1338	
VII	-126.0	264.5	5.9	36.6	1350	
VIII	-127.2	264.5	2.15	30.3	1334	
IX	-127.7	267	0.8	21.7	1318	
Х	-128.2	267	2.2	2.8	1280	
XI	-124.1	259	3.8	10.3	1286	863
XII	-123.6	257.5	1.15	26.0	1325	874
XIII	-123.7	259	0.85	20.1	1327	871
XIV	-123.7	259	0.9	21.9	1328	872.
XV	-123.4	256	1.5	33.8	1354	868
IVX	-123.7	256.5	0.9	15.3	1342	874
IIVX	-122.7	253	3.2	40.7	1354	876
XVIII	-123.7	256	0.45	34.8	1348	868
XIX	-123.5	256.5	1.7	25.5	1324	862
XX	-123.7	258	3.2	7.1	1328	863
XXI	-147.5			17.1	1052 *	
XXII	-146.7	185	5.2	31.6	1344	902
XXIII	-146.4	184.5	5.25	25.7	1340	910
XXIV	-146.4	185.5	5.25	26.7	1342	909
XXV	-146.6	180.5	4.5	39.2	1356	915
IVXX	-146.3	182.5	4.8	21.3	1345	916
XXVII	-146.9	175	3.7	45.8	1368	898
IIIVXX	-146.7	181	4.8	40.6	1350	906
XXIX	-146.2	184.5	5.55	31.6	1342	909
XXX	-145.7			13.2	1338	911
XXXI	-146.2		6.1	22.0	1042 ⁵	

 $^{19}\text{F-}$ und $^{31}\text{P-NMR-Spektren}$ sowie IR-Absorptionen v(P=N) und v(Si-F) der Verbindungen I-XXXI $^{\$}$

Erläuterungen zur TABELLE 2:

§Sämtliche NMR-Spektren wurden mit einem Gerät Varian XL 100/15 bei totaler ¹H-Entkopplung (¹⁹F bei 94.1 MHz und mit CCl_3F als externem Standard, ³¹P bei 40.5 MHz und mit 85%-H₃PO₄ als externem Standard) vermessen; δ in ppm, J in Hz; negative Vorzeichen bedeuten höhere Feldstärken, bezogen auf den Standard. Die IR-Spektren wurden mit einem Perkin-Elmer Modell 337 aufgenommen; Flüssigkeiten wurden in kapillarer Schichtdicke, Festsubstanzen an Nujolsuspensionen zwischen KBr-Fenstern vermessen. Alle Werte in cm⁻¹.

NMR-spektroskopische Versuche, neben der monomeren auch die dimere Species nachzuweisen, gelang nur bei tieferen Temperaturen und nur bei den <u>Tri</u>fluorsilylverbindungen XXII-XXIV, XXVI, XXIX und XXX. Offensichtlich ist der sich summierende Elektronensog von drei Fluoratomen notwendig, um das Siliciumatom so stark zu positivieren, damit eine Dimerisierung von N-fluorsilylsubstituierten Phosphiniminen möglich wird. Bei der schrittweisen Erniedrigung der Meßtemperatur ist bei den genannten Verbindungen sowohl bei den ¹⁹F- als auch bei den ³¹P-NMR-Spektren eine Abnahme des ursprünglichen Signals zu beobachten, die mit dem Auftauchen und Anwachsen eines neuen Signals bei tieferen Feldstärken verbunden ist (Tab. 3). Die etwa bei +15°C beginnende Assoziation von (XXI) läßt sich NMR-spektroskopisch allerdings nur durch die Abnahme des Monomeren-Signals erkennen, da das Dimere schwerlöslich ist.

Die Temperatur, bei der die Dimerisierung einsetzt, hängt nur in untergeordnetem Maße von der Lewis-Basiziztät des Stickstoffatoms des jeweiligen Phosphinimins ab, sie wird in der Hauptsache von der mehr oder minder großen sterischen Abschirmung des Stickstoffatoms durch die phosphorständigen Alkylgruppen bestimmt [28]. Dies bewog uns, auch noch das Trifluorsilyl-Derivat von Me₂EtP=N-SiMe₃ zu synthetisieren, da dieses unter Normalbedingungen durchaus eine dimere Struktur besitzen könnte. Diese Vermutung war insofern nicht abwegig, als die N-chlorsilylsubstituierten Derivate dieses Phosphinimins in ihren Eigenschaften sehr denen von $Me_3P=N-SiMe_3$ ähneln [7]. In der Tat fällt $Me_2EtP=N-SiF_3$ (XXXI) wie (XXI) im Reinzustand bei Raumtemperatur dimer an. In Lösung ist (XXXI) monomer, bei tieferen Temperaturen tritt aber die erwartete Assoziation zum Dimeren ein, das als in chlorierten Kohlenwasserstoffen lösliche Verbindung NMR-spektroskopisch identifizierbar ist. Der niedrige Festpunkt von (XXXI) erlaubte auch die Aufnahme eines IR-Spektrums der flüssigen Verbindung, hierbei erscheint $\sqrt{(P=N)}$ bei 1325 cm⁻¹. Der Schmelzvorgang von (XXXI) ist somit ebenso wie der Lösungsvorgang mit einer Dissoziation der Verbindung in Monomere verbunden.

TABELLE 3

Nr.	erstes Auftauchen des Signals bei	δF	6 P
XXII	~0 ⁰ C	-118.1	48.7
XXIII	~ −10 [°] C	-117.2	42.3
XXIV	~ −10 [°] C	-117.0	43.4
XXVI	~ −80°C	-118.9	42.3
XXIX	~ −60°C	-114.0	46.9
XXX	~ −5°C	-117.3	29.9
XXXI	~ +15 [°] ℃	-117.2	42.1

Chemische Verschiebungen von $^{19}{\rm F}$ und $^{31}{\rm P}$ der dimeren Species von XXII, XXII, XXIV, XXVI, XXIX, XXX und XXXI $^{\$}$

§Bei den Messungen wurden je nach Löslichkeit der einzelnen Verbindungen Temperaturen von -60 bis -90°C erreicht.

EXPERIMENTELLER TEIL

Alle Versuche wurden unter Feuchtigkeitsausschluß in einer trockenen Stickstoff-Atmosphäre durchgeführt. Lösungsmittel und Geräte waren dementsprechend vorbehandelt. Die C-, H- und N-Analysen wurden von Frau E. Ullrich im Mikrolaboratorium des hiesigen Instituts ausgeführt.

Die folgenden Ausgangsverbindungen erhielten wir nach Literaturvorschriften: $R_3P=N-SiMe_3$ [7,27,29-33], $R_3P=N-SiMe_2Cl$ [1,7], $R_3P=N-SiMeCl_2$ [7], Me_2SiF_2 [34], $MeSiF_3$ [35], SiF_4 [36].

4
щ
Η
H
A
EH

Ansätze und Ausbeuten bei der Darstellung der Verbindungen I-XXXI

R ₃ P=N-Si(CH ₃) ₃			Reaktionspar	ctner [§]		Produkt			
R ₃	50	LoMm	Formel	50	LoMm	Nr.	٥Û	ToMm	1%
(CH ₃) ₃	1.68	10.3	(CH _z) ₂ SiF ₂	3.07	31.9	Ц	1.55	9.27	6
(c _{2H5}) ₃	2.11	10.3	(CH ₃) ₅ SiF ₂	3.53	36.7	II	1.96	9.36	9
$(n-c_{3H_{7}})_{3}$	1.74	7.03	(CH ₃) ₂ SiF ₂	1.85	19.2	III	1.56	6.21	88
$(n-c_{4}H_{q})_{3}$	1.71	5.91	(CH ₃) ₂ SiF2	2.10	21.8	IV	1.55	5.28	68
$(i-c_{3H_{7}})_{3}$	1.74	7.03	(CH ₃) ₂ SiF ₂	1.78	18.5	Λ	1.54	6.13	87
$(i-c_{4}H_{q})_{3}$	1.70	5.87	(CH _z) _{siF}	1.90	19.8	ΓΛ	1.39	4.74	8
$(t-c_{4}H_{q})_{3}$	1.79	6.18	(CH ₃) ₂ SiF ₂	2.61	27.1	VII	1.52	5.18	84
$(t-c_{4}H_{g})_{2}, cH_{3}$	1.66	6.71	$(CH_3)_{SIF_2}$	2.30	23.9	VIII	1.39	5.53	82
$t-c_{4}H_{q}, (cH_{3})_{2}$	1.71	8.33	$(cH_{3})_{5SIF_{2}}$	3.04	31.6	IX	1.58	7.55	91
$c_{6H_5}, (c_{H_3})_2$	1.93	8.56	$(CH_3)_2^{SiF_2}$	3.02	31.4	Х	1.80	7.85	92
(CH ₃) ₃	1.71	10.5	CH _z SiF _z	1.68	16.8	XI	1.67	9.75	93
$(c_2 \tilde{H}_5)_3$	1.70	8.28	CH ₃ SiF ₃	1.35	13.5	XII	1.62	7.60	92
$(n-c_{3H_{\gamma}})_{3}$	1.68	6.79	CH ₃ SiF ₃	1.32	13.2	XIII	1.53	6.18	91
$(n-c_{4}H_{q})_{3}$	1.75	6.04	CH ₃ SiF3	1.26	12.6	ΛIΧ	1.55	5.21	86
$(i-c_{3H_{\gamma}})_{3}$	1.69	6.83	CH ₃ SiF ₃	1.12	11.2	ХV	1.46	5.72	84
$(i-c_{4}H_{q})_{3}$	1.70	5.87	CH ₃ SiF ₃	1.45	14.5	IVX	1.44	4.84	82
$(t-c_{4}H_{9})_{3}$	1.54	5.32	CH ₇ S1F ₃	1.58	15.8	ΙΙΛΧ	1.26	4.24	80
$(t-c_{4}H_{9})_{2}, c_{H_{3}}$	1.72	6.95	CH ₃ SiF3	1.89	18.9	IIIVX	1.37	5.36	77

64	3.09	0.66	ΙΙΙΛΧ	44.1	1.85	NaF	4.83	1.19	$t-c_{4}H_{9}$, $(cH_{3})_{2}$
11	2.66	0.79	ΙΙΛΧ	44.1	1.85	NaF	3.72	1.23	$(t-c_4H_9)_3$
69	4.78	1.02	XII	52.4	2.20	NaF	6.95	1.71	(c ₂ H ₅) ₃
									R ₃ P=N-Si(CH ₃)Cl ₂
73	3 . 92	0.90	Х	23.8	1.00	NaF	5.41	1.33	c ₆ H ₅ , (cH ₃) ₂
75	5.92	1.24	II	31.4	1.32	NaF	7.88	1.78	(c ₂ H ₅) ₃
									R ₅ P≠N-Si(CH ₃) ₂ C:
88	4•44	0.84	IXXX			SiF4	5.02	0.89	c ₂ H ₅ , (cH ₃) ₂
93	6.70	1.59	XXX			SiF4	7.19	1.62	с ₆ н ₅ , (сн ₃) ₂
84	4.74	1.03	XXIX			SiF_4	5.65	1.16	$t-c_{4}H_{9}$, $(cH_{3})_{2}$
85	5.63	1.46	XXVIII			SiF4	6.63	1.64	$(t-c_{4}H_{9})_{2}, c_{H_{3}}$
85	6.37	1.92	XXVII			SiF4	7.46	2.16	$(t-c_{4}^{H_{g}})_{3}$
79	4.81	1.45	XXVI			SiF	6.11	1.77	$(i-c_{4}H_{q})_{3}$
86	5.48	1.42	XXV			SiF4	6.34	1.57	$(i-c_{3H_{\gamma}})_{3}$
86	5.01	1.51	XXIV			SiF4	5.80	1.68	$(n-c_{4}H_{9})_{3}$
83	5.67	1.47	IIIXX			SiF_4	6.79	1.68	$(n-c_{3H_{7}})_{3}$
6	7.59	1.65	IIXX			SiF4	8.47	1.74	(c ₂ H ₅) ₃
88	9.25	1.62	XXI			SiF_4	10.5	1.72	$(cH_3)_3$
90	7.63	1.78	XX	14.3	1.43	CH ₃ SiF ₃	8.52	1.92	c ₆ H ₅ , (cH ₃) ₂
87	6.66	1.42	XIX	15.1	1.51	CH ₃ SiF ₃	7.64	1.57	$t-c_4H_9$, $(cH_3)_2$

ŝ	
TABELLE	

Schmelz- und Siedepunkte, Molekulargewichte und C-, H-, N-Analysen der Verbindungen I-XXXI

, in the second s	Schmp.§	Kp.	- ToM	Gew. ^{&}		U		н	N	
• 11	Do	oc/mm Hg	ber.	gef.	ber.	gef.	ber.	gef.	ber.	gef.
н	-10-(-9)	46-47/1	167.2	160	35.91	36.13	9.04	8.86	8.38	8.18
II	-13-(-12)	36-37/0.1	209.3	204	45.90	45.81	10.11	10.10	6.69	6.54
III	-26-(-25)	65-66/0.1	251.4	258	52.55	52.80	10.83	10.69	5.57	5.43
ΛI	-13-(-12)	93-94/0.1	293.5	277	57.29	57.29	11.33	11.32	4.77	4.67
Δ	-26-(-25)	76-77/0.3	251.4	247	52.55	52.65	10.83	10.71	5.57	5.29
ΙΛ	-43-(-42)	77-79/0.1	293.5	281	57.29	57.13	11.33	11.28	4.77	4.64
IIV	42-43	95-97/0.3	293.5	292	57,29	57.11	11.33	11.23	4.77	4.74
TIIV	-42-(-41)	55-56/0.1	251.4	236	52.55	52.74	10.83	10.67	5.57	5.53
IX	-12-(-11)	63-64/1.2	209.3	201	45.90	45.56	10.11	9.70	6.69	6.43
X		80-82/0.1	229.3	235	52.38	52.14	7.47	7.30	6.11	6.04
ТX	5 - 6	52-53/1	171.2	164	28.06	28.17	7.06	7.32	8.18	8.13
IIX		42-43/0.1	213.3	211	39.42	39.10	8.51	8.26	6.57	6.45
IIIX		67-68/0.1	255.4	248	47.03	47.22	9.47	9.58	5.49	5.62
ΧIΧ		94-96/0.1	297.5	288	52.49	52.01	10.17	9.92	4.71	4.87
XV		64-65/0.1	255.4	241	47.03	47.16	9.47	9.50	5.49	5.29
ΙΛΧ		76-78/0.1	297.5	292	52.49	52.75	10.17	10.39	4.71	4.86
ΧΥΙΙ	97 - 98	62-65/0.01 ⁺	297.5	282	52.49	52.27	10.17	10.44	4.71	4.44
XVIII		58-60/0.1	255.4	252	47.03	47.32	9.47	9.17	5.49	5.37
XIX		39-40/0.1	213.3	217	39.42	39.18	8.51	8.52	6.57	6.31

XX		79-81/0.1	233.3	245	46.34	46.59	6.05	6.14	6.00	6.06
IXX	74-75	55-60/0.1 ⁺	175.2	189	20.57	20.41	5.18	5.22	8,00	7.79
IIXX	41-42	52-53/0.1	217.3	209	33.17	33.46	6 •96	6.63	6.45	6.56
IIIXX	36-37	68-69/0.1	259.3	247	41.66	41.93	8.16	8.15	5.40	5.21
VIXX	7-8	95-97/0.1	301.4	291	47.82	47.66	9.03	00.6	4.65	4.81
XXV	51-52	66-67/0.1	259.3	246	41.68	41.81	8.16	8.09	5.40	5,20
ΙΛΧΧ	42-43	77-78/0.1	301.4	289	47.82	47.70	9.03	9.08	4.65	4.51
IIVXX	197–198	65-70/0.01 ⁺	301.4	294	47.82	47.66	·03	8.94	4.65	4.48
XXVIII	31-32	61-62/0.1	259.3	249	41.68	41.96	8.16	8.08	5.40	5.39
XXXX	19-20	41-42/0.1	217.3	223	33.17	33.48	6.96	7.27	6.45	6.60
XXX	48-49	79-80/0.1	237.2	230	40.50	40.78	4.67	4.88	5.90	6.18
IXXX	44-45	35-40/0.2 ⁺	189.2	198	25.39	25.42	5.86	5.86	7.40	7.86

[§]Die Schmelzpunkte der bei Raumtemperatur flüssigen Verbindungen wurden nur zum Teil ermittelt.

[&]Die Molekulargewichte von (XXI) und (XXXI) wurden ebullioskopisch in Methylenchlorid, die aller anderen Verbindungen kryoskopisch in Benzol bestimmt.

+sublimiert.

Darstellung von (I-XX) aus R₃P=N-SiMe₃ durch Umsilylierung

In einem 50 ml-Rundkolben wurde eine kleine Menge des jeweiligen N-Silyl-phosphinimins genau eingewogen. Der Kolben wurde nun über ein Verbindungsstück mit dem entsprechenden Fluorsilan-Vorratsgefäß verbunden, dann auf etwa -40°C abgekühlt und das Fluorsilan in genügender Menge überkondensiert. Nach dem Auftauen auf etwa -20°C wurde der Reaktionskolben mit einem Schliffstopfen <u>fest</u> verschlossen und 1-3 Tage bei Raumtemperatur stehen gelassen. Die Isolierung der Endprodukte erfolgte durch Vakuumdestillation oder -sublimation. Ansätze, Ausbeuten und Analysen sind in den Tabellen 4 und 5 zusammengefaßt.

<u>Umsilylierung von R₃P=N-SiMe₃ zu (XXI-XXXI)</u>

Zur Darstellung von (XXI-XXXI) wurde das entsprechende N-Silyl-phosphinimin in einem mit Gaszuführungs- und Gasableitungsrohr versehenen Rundkolben in 30 ml Methylenchlorid gelöst, mit einer Eis-Kochsalz-Mischung auf etwa -5° C abgekühlt und 5 bis 8 h ein langsamer Strom von Siliciumtetrafluorid durchgeleitet. Da SiF₄ in CH₂Cl₂ relativ gut löslich ist, wurde anschließend der Reaktionskolben fest verschlossen und zur weiteren Umsetzung noch einen Tag bei Raumtemperatur stehen gelassen. Die Aufarbeitung erfolgte wie oben beschrieben. Ansätze und Ausbeuten sind in der Tab. 4, die Analysen in der Tab. 5 zusammengestellt.

Umsetzung von R₃P=N-SiMe_{3-n}Cl_n mit Natriumfluorid

Das jeweilige N-Chlorsilyl-phosphinimin wurde zusammen mit einem größeren Überschuß an Natriumfluorid mehrere Tage in Acetonitril bei 80[°]C gekocht, dann das ausgefallene Natriumchlorid und das unumgesetzte Natriumfluorid mit Hilfe einer Umkehrfritte abfiltriert und das Filtrat destillativ aufgearbeitet. Ansätze und Ausbeuten können der Tab. 4 entnommen werden. Den Herren Prof. Dr. H. Schmidbaur und Prof. Dr. M. Schmidt danke ich für die großzügige Bereitstellung von Institutsmitteln. Weiterhin gilt mein Dank Herrn C.P. Kneis für die Messung der 19 F- und 31 P-NMR-Spektren.

LITERATUR

- 1 W. Wolfsberger, H.H. Pickel und H. Schmidbaur, J. Organometal. Chem., 28 (1971) 307.
- 2 W. Wolfsberger, H.H. Pickel und H. Schmidbaur, Chem. Ber., 101 (1971) 1830.
- 3 W. Wolfsberger, J. Organometal. Chem., <u>88</u> (1975) 133.
- 4 W.S. Sheldrick und W. Wolfsberger, Z. Naturforsch. B, <u>32</u> (1977) 22.
- 5 R. Appel, R. Milker und I. Ruppert, Z. Anorg. Allg. Chem., 429 (1977) 69.
- 6 P. Wisian-Neilson, R.H. Neilson und A.H. Cowley, Inorg. Chem., <u>16</u> (1977) 1460
- 7 W. Wolfsberger, Z. Naturforsch. B, 32 (1977), im Druck.
- 8 vgl. z. B. L.H. Sommer, Stereochemistry, Mechanism, and Silicon, McGraw-Hill Book Company, New York, 1965.
- 9 H.C. Clark, P.W.R. Corfield, K.R. Dixon und J.A. Ibers, J. Amer. Chem. Soc., <u>89</u> (1967) 3360.
- 10 R. Rudman, W.C. Hamilton, S. Novick und T.D. Goldfarb, J. Amer. Chem. Soc., <u>89</u> (1967) 5157.
- 11 J.W. Turley, F.P. Boer und C. Frye, Chem. Eng. News, <u>45</u> (1967) 46.
- 12 J.W. Turley und F.P. Boer, J. Amer. Chem. Soc., <u>90</u> (1968) 4026.
- 13 F.P. Boer, J.W. Turley und J.J. Flynn, J. Amer. Chem. Soc., 90 (1968) 5102.
- 14 F.P. Boer, J.J. Flynn und J.W. Turley, J. Amer. Chem. Soc., 90 (1968) 6973.
- 15 J.W. Turley und F.P. Boer, J. Amer. Chem. Soc., 91 (1969) 4129.

DANK

- 16 F.P. Boer und J.W. Turley, J. Amer. Chem. Soc., <u>91</u> (1969) 4134.
- 17 F.P. Boer und F.P. van Remoortere, J. Amer. Chem. Soc., <u>92</u> (1970) 801.
- 18 J.C. Calabrese und L.F. Dahl, J. Amer. Chem. Soc., <u>93</u> (1971) 6042.
- 19 J.J. Bleidelis, A.A. Kemme, G.I. Zelchan und M.G. Voronkov, Khim. Geterotsikl. Soedinenii, (1973) 617.
- 20 A.A. Kemme und J.J. Bleidelis, Izv. Akad. Nauk Latv.S.S.R., Ser. Khim., (1974) 371.
- 21 J.J. Daly und F. Sanz, J. Chem. Soc. Dalton, (1974) 2051.
- 22 L. Parkanyi, K. Simon und J. Nagy, Acta Crystallogr., Sect. B, 30 (1974) 2328.
- 23 L. Parkányi, J. Nagy und K. Simon, J. Organometal. Chem., 101 (1975) 11.
- 24 A.A. Kemme, J.J. Bleidelis, V.M. Djakov und M.G. Voronkov, Zhur. Strukt. Khim., <u>16</u> (1975) 914.
- 25 A.A. Kemme, J.J. Bleidelis, I. Solomennikova, G.I. Zelchan und E. Lukevics, J. Chem. Soc. Chem. Comm., (1976) 1041.
- 26 A.A. Kemme, J.J. Bleidelis, V.M. Djakov und M.G. Voronkov, Izv. Akad. Nauk S.S.S.R., Ser. Khim., <u>25</u> (1976) 2244.
- 27 W. Buchner und W. Wolfsberger, Z. Naturforsch. B, <u>29</u> (1974) 328.
- 28 W. Wolfsberger, Z. Naturforsch. B, <u>32</u> (1977) 152.
- 29 L. Birkofer und S.M. Kim, Chem. Ber., <u>97</u> (1964) 2100.
- 30 H. Schmidbaur und W. Wolfsberger, Chem. Ber., <u>100</u> (1968) 1000.
- 31 H. Stadelmann, O. Stelzer und R. Schmutzler, Z. Anorg. Allg. Chem., <u>385</u> (1971) 142.
- 32 R. Appel, I. Ruppert und F. Knoll, Chem. Ber., <u>105</u> (1972) 2492.
- 33 W. Wolfsberger, Z. Naturforsch. B, 30 (1975) 900.
- 34 H.S. Booth und J.F. Suttle, J. Amer. Chem. Soc., <u>68</u> (1946) 2658.
- 35 H.S. Booth und W.F. Martin, J. Amer. Chem. Soc., <u>68</u> (1946) 2655.
- 36 G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 2. Aufl., 1960, S. 202.